• MARWA M QADRI OUMERI Dept.of Medical Microbiology, College of Medicine, University of Duhok
  • NAJIM A. YASSIN Dept.of Medical Microbiology, College of Medicine, University of Duhok
Keywords: P . aeruginosa, Burn and wound, Carbapenem resistance gene, PCR


Background Pseudomonas aeruginosa is an opportunistic pathogen causes severe nosocomial infections among burn and wound patients. Multi-drug resistant strains namely carbapenems antibiotics have mentioned worldwide.

Objectives The aim of this study was to know the incidence, patterns of antibiotic susceptibility and molecular characterization of P . aeruginosa isolates among wound and burn hospitalized patients.

Methods From September 2019 till September 2020, a total of 524 burn and wound swabs were collected from inpatients at Burn and Emergency Hospital, Duhok city, the Kurdistan region, Iraq. The swabs were cultured and bacterial isolates were identified manually through microbiological tests then by Vitek2 compound system. The isolates were checked for their antibiotic susceptibility patterns then subjected to Polymerase Chain Reaction ( PCR) assay using a set of specific primers for detection of (OprD, blaVIM, blaIMP) carbapenem-resistance genes.

Result About 60 (11.4%) isolates were identified as P . aeruginosa; 33 (55%) from female and 27 (45%) from male. Wound isolates exhibited pretty higher resistance over burn against 24 tested antibiotics. Imipenem; meropenem resistance rates were as (33.3 %; 31.7%) and (32.6%; 26.1%) for burn and wound, respectively. High resistance to piperacillin & ticarcillin (75% for both), ticarcillin/clavulanic acid (66.7 %) and tobramycin (63.6 %) were noticed in burn isolates. Colistin and piperacillin/tazobactam exhibited very low resistance. PCR assay indicated that 48 (96%) isolates were contained either single or double genes. OprD was predominated 40 (80 %) isolates then bla VIM gene 8 (16 %) isolates, while no bla IMP gene was detected. About 8 isolates were harbored double resistance genes (OprD, bla VIM) simultaneously and unexpectedly 1 (12%) of these isolate was phenotypic carbapenem-susceptible. moreover, 5 phenotypic carbapenem-resistance isolates were not contained any target resistance genes by PCR assay.

Conclusion           Occurrence of P . aeruginosa as a harbor of multiple carbapenemase resistance genes is increasing over time limiting the treatment options to this serious infection. The data support basic mechanism of imipenem resistance could be mostly via the loss of OprD. Colistin and piperacillin/tazobactam have high efficacy


Download data is not yet available.


Al-Huraishi, M. A. M. (2016). Molecular detection of multidrug resistance Acinetobacter baumannii from different clinical samples (Doctoral dissertation, MSc Thesis. College of Medicine, Al-Nahrain University, Iraq).‏
Aljanaby, A. A. J., & Aljanaby, I. A. J. (2017). Profile of Antimicrobial Resistance of Aerobic Pathogenic Bacteria isolated from Different Clinical Infections in Al-Kufa Central Hospital–Iraq During period from 2015 to 2017. Research Journal of Pharmacy and Technology, 10(10), 3264-3270.‏
Al-khudhairy, M. K., & Al-Shammari, M. M. M. (2020). Prevalence of metallo-β-lactamase–producing Pseudomonas aeruginosa isolated from diabetic foot infections in Iraq. New microbes and new infections, 35, 100661.‏
Alma L, Rosa D,Elena B,Claudia J, Yolanda S, Miguel C. et al., (2019). Characterization of antimicrobial resistance mechanisms in carbapenem-resistant Pseudomonas aeruginosa carrying IMP variants recovered from a Mexican Hospital. Infection and Drug Resistance. 185.239-27 .
Al-Ouqaili, M. T. (2018). Identification of an OprD and blaIMP gene-mediated carbapenem resistance in Acinetobacter baumannii and Pseudomonas aeruginosa among patients with wound infections in Iraq. Asian Journal of Pharmaceutics (AJP):12(03).‏
Al-Shara, J. M. R. (2013). Phenotypic and molecular detecting of carbapenem resistant Pseudomonas aeruginosa in Najaf Hospitals (Doctoral dissertation, Ph. D. Thesis. Sc, University of Kufa. Iraq).
Amin, N. E., Giske, C. G., Jalal, S., Keijser, B., Kronvall, G., & Wretlind, B. (2005). Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. Apmis, 113(3), 187-196.‏
Anoar KA, Ali FA, Omar SA, (2014). Detection of metallo-β-lactamase enzyme in some Gram negative bacterial isolated from burn patients in Sulaimani City, Iraq. European Scientific journal,10:1857–81.
Anvarinejad, M., Japoni, A., Rafaatpour, N., Mardaneh, J., Abbasi, P., Shahidi, M. A., et al. (2014). Burn patients infected with metallo-beta-lactamase-producing Pseudomonas aeruginosa: Multidrug-resistant strains. Archives of trauma research, 3(2).‏
Bassetti M, Vena A, Croxatto A, Righi E, Guery B. (2018). How to manage Pseudomonas aeruginosa infections. Drugs Context, 7:212527.
Bauer, A. W., Kirby, W. M., Sherris, J. C., and Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disc method. Am J clin pathol; 45(4): 493-496.
Bhatt, P., Rathi, K. R., Hazra, S., Sharma, A., & Shete, V. (2015). Prevalence of multidrug resistant Pseudomonas aeruginosa infection in burn patients at a tertiary care center. Indian J Burns 2015;23 (1):56-59.
Chairat, S., Ben Yahia, H., Rojo-Bezares, B., Sáenz, Y., Torres, C., & Ben Slama, K. (2019). High prevalence of imipenem-resistant and metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Burns Hospital in Tunisia: detection of a novel class 1 integron. Journal of Chemotherapy, 31(3), 120-126.‏
Dash C, Sahu S, Sinha S, & Nayak, P. (2019). Pseudomonas aeruginosa in burn infections and its antimicrobial resistance. J Evid Based Med Healthc. 2019; 6(26), 1772-1776. DOI: 10.18410/jebmh/2019/361.
Desjardins , P.R and D. S. Conklin, D.S (2011). “Microvolume quantitation of nucleic acid,” Current Protocols in Human Genetics, 93: 3J.1–A.3J.
Dou Y, Huan J, Guo F. (2017). Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014. J Int Med Res,45 (3):1124-1137.
Douglas, M.W., Mulholland, K., Denyer, V. and Gottlieb, T. (2001). Multi-drug resistant P.aeruginosa outbreak in a burns unit an infection control study. Burns, 27(2): 131-135.
Ece, G., Samlioglu, P., Atalay, S., & Kose, S. (2014). Evaluation of the in vitro colistin susceptibility of Pseudomonas aeruginosa and Acinetobacter baumannii strains at a tertiary care centre in Western Turkey. Le infezioni in medicina, 22(1), 36-40.‏
Farajzadeh Sheikh A, Rostami S, Jolodar A, Tabatabaiefar MA, Khorvash F, Saki A, et al. (2014). Detection of Metallo-Beta Lactamases among Carbapenem-Resistant Pseudomonas aeruginosa. Jundishapur J Microbiol. 7(11):12289.
Fatemeh S., Fereshteh E. (2014). Prevalence of blaIMP and blaVIM gene carriage in metallo-β-lactamase-producing burn isolates of Pseudomonas aeruginosa in Tehran Turk J Med Sci, 44:511-514.
Garcia, M. M. (2013). Carbapenemases: A real threat. APUA Newsl, 31, 4-6.‏
Goli HR, Nahaei MR, Ahangarzadeh Rezaee M, et al. (2016). Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran. Iranian journal of microbiology. 8(1): 62-9.
Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K, (2015). Epidemiology and characteristics of metallo-β-lactamase producing Pseudomonas aeruginosa. Infection & chemotherapy.47:81–97.
Hussein, Z. K., & Shamkhi, I. J. (2018). Detection of bla VIM1 gene in carbapenem resistant Pseudomonas aeruginosa isolated from clinical samples in Wasit province hospitals. Basrah J Vet Res, 17, 30-44.‏
Hussein, Z. K., Kadhim, H. S., & Hassan, J. S. (2018). Detection of New Delhi metallo-beta-lactamase-1 (blaNDM-1) in carbapenem-resistant pseudomonas aeruginosa isolated from clinical samples in Wasit hospitals. Iraqi JMS. 2018; 16 (3): 239-246. doi: 10.22578. IJMS, 16(3).‏
Jaafar, Z. M., Dhahi, M. A., Abd, A. K. H., & Jaafar, S. M. (2014). Molecular identification and antibiotics resistance genes profile of Pseudomonas aeruginosa isolated from Iraqi patients. African Journal of Microbiology Research, 8(21), 2183-2192.‏
Karimian, A., Momtaz, H., and Madani, M. (2012). Detection of uropathogenic E.coli virulence factors in patients with urinary tract infections in Iran. African Journal of Microbiology Research,6 (39): 6811-6816.
Khosravi, A. D., Motahar, M., & Abbasi Montazeri, E. (2017). The frequency of class1 and 2 integrons in Pseudomonas aeruginosa strains isolated from burn patients in a burn center of Ahvaz, Iran. PloS one, 12(8), e0183061.‏
Livermore, D. M. (2001). Of Pseudomonas, porins, pumps and carbapenems. Journal of Antimicrobial Chemotherapy, 47(3), 247-250.‏
Mahmood Saffari, F. F., Pourbabaee, M., & Zibaei, M. (2016). Evaluation of metallo-β-lactamase-production and carriage of bla-vim genes in Pseudomonas aeruginosa isolated from burn wound infections in Isfahan. Archives of trauma research, 5(4).‏
Miriagou, V., Cornaglia, G., Edelstein, M., Galani, I., Giske, C. G., Gniadkowski, M., et al. (2010). Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clinical microbiology and infection, 16(2), 112-122.‏
Moradali, M. F., Ghods, S., & Rehm, B. H. (2017). Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Frontiers in cellular and infection microbiology, 7, 39.
Mushtak T. S., Ahmed S. J, Amin S. B.(2018). Identification of an OprD and bla IMP Gene-mediated Carbapenem Resistance in Acinetobacter baumannii and Pseudomonas aeruginosa among patients with Wound Infection in Iraq.DOI: 10.22377/ajp.v12103.2634.
Nanvazadeh, F., Khosravi, A. D., Zolfaghari, M. R., & Parhizgari, N. (2013). Genotyping of Pseudomonas aeruginosa strains isolated from burn patients by RAPD-PCR. Burns, 39(7), 1409-1413.‏
Nordmann, P., & Poirel, L. (2014). The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clinical Microbiology and Infection, 20(9), 821-830.‏
Ocampo-Sosa, A. A., Cabot, G., Rodríguez, C., Roman, E., Tubau, F., Macia, M. D., et al. (REIPI. (2012). Alterations of OprD in carbapenem-intermediate and-susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrobial agents and chemotherapy, 56(4), 1703-1713.‏
Othman, N., Babakir-Mina, M., Noori, C. K., & Rashid, P. Y. (2014). Pseudomonas aeruginosa infection in burn patients in Sulaimaniyah, Iraq: risk factors and antibiotic resistance rates. The Journal of Infection in Developing Countries, 8(11), 1498-1502.‏
Ozgumus, O. B., Caylan, R., Tosun, I., Sandalli, C., Aydin, K., & Koksal, I. (2007). Molecular epidemiology of clinical Pseudomonas aeruginosa isolates carrying IMP-1 metallo-β-lactamase gene in a university hospital in Turkey. Microbial Drug Resistance, 13(3), 191-198.‏
Qader, M. K., Solmaz, H., & Merza, N. S. (2020). Molecular Typing and Virulence Analysis of Pseudomonas Aerugınosa Isolated From Burn Infections Recovered From Duhok and Erbil Hospitals/Iraq. UKH Journal of Science and Engineering, 4(2), 1-10.‏
Radan, M., Moniri, R., Khorshidi, A., Gilasi, H., Norouzi, Z., Beigi, F., et al. (2016). Emerging carbapenem-resistant Pseudomonas aeruginosa isolates carrying blaIMP among burn patients in Isfahan, Iran. Archives of Trauma Research,, 5(3).‏
Rodríguez-Martínez, J. M., Poirel, L., & Nordmann, P. (2009). Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, 53(11), 4783-4788.
Sales, A., Fathi, R., & Mobaiyen, H. (2017). Molecular Study of the Prevalence of CTX-M1, CTX-M2, CTXM3 in Pseudomonas aeruginosa Isolated from Clinical Samples in Tabriz Town, Iran. Electronic J Biol, 13(3), 253-9.‏
Salimi, F., & Eftekhar, F. (2014). Prevalence of blAbstractP and blaVIM gene carriage in metallo-\beta-lactamase-producing burn isolates of Pseudomonas aeruginosa in Tehran. Turkish journal of medical sciences, 44(3), 511-514.‏
Shaaban, M., Al-Qahtani, A., Al-Ahdal, M., & Barwa, R. (2017). Molecular characterization of resistance mechanisms in Pseudomonas aeruginosa isolates resistant to carbapenems. The Journal of Infection in Developing Countries, 11(12), 935-943.‏
Shariati, A., Azimi, T., Ardebili, A., Chirani, A. S., Bahramian, A., Pormohammad, A., et al. (2018). Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran, Iran. New microbes and new infections, 21, 75-80.‏
Sokal, R. R. and Rohlf, F.J. (2013). Introduction to Biostatistics, 2nd ed. Dover. NewYork, 1099-1121.
Sukumaran, S. (2011). “Concentration determination of nucleic acids and proteins using the micro-volume bio-spec nano spectrophotometer,” Journal of Visualized Experiments, 1:2699.
Tsao, L. H., Hsin, C. Y., Liu, H. Y., Chuang, H. C., Chen, L. Y., & Lee, Y. J. (2018). Risk factors for healthcare-associated infection caused by carbapenem-resistant Pseudomonas aeruginosa. Journal of microbiology, immunology and infection, 51(3), 359-366.‏
Turk, M. (2011). Carbapenem resistant pseudomonas aeruginosa: oprd downregulation and the types of metallo-β-lactamases produced. University of Balamand, 56-62.‏
van Burgh, S., Maghdid, D. M., Ganjo, A. R., Mansoor, I. Y., Kok, D. J., Fatah, M. H., et al. (2019). PME and other ESBL-positive multi-resistant Pseudomonas aeruginosa isolated from hospitalized patients in the region of Kurdistan, Iraq. Microbial Drug Resistance, 25(1), 32-38.‏
Versalovic, J., Carroll, K. C., Funke, G., Jorgensen, J. H., Landry, M. L., & Warnock, D. W. (2011). Manual of clinical microbiology, ASM Press. Washington, DC [Google Scholar].‏
View at: Publisher Site | Google Scholar
Weinstein, M., Patel, J., Bobenchik, A. (2017). Clinical and laboratory standards institute. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 296.
Wilson, M. L., Mitchell, M., Morris, A. J., Murray, P. R., Reimer, L. G., Reller, L. B., et al. (2007). Principles and procedures for blood cultures; approved guideline. CLSI document M47-A. Clinical and Laboratory Standards Institute, Wayne, PA.‏
Yassin, N. A., Khalid, H. M., & Hassan, A. O. (2014). Prevalence of metallo-β-lactamase producing Pseudomonas aeruginosa in wound infections in Duhok City, Iraq. Int J Res Med Sci, 2, 1576-9.‏
How to Cite
Pure and Engineering Sciences